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Introduction 
In today’s business world, the only thing that is certain is that everything is uncertain. 

This may sound like a cliché, but the idea that today’s business leaders struggle with risk and 

uncertainty is as true as ever. In fact, as the world becomes smaller and economies more 

integrated, concerns once mitigated by distance are quickly becoming top issues for even mid-

sized companies. This is particularly true for many commodity-based agricultural businesses 

that can be impacted by events occurring in other countries or continents. Their financing 

decisions and the processes driving those decisions must be versatile enough to account for 

multiple possibilities and states of nature. Although the pessimist may find the growth of risk 

unsettling, companies and individuals have substantially more options and power to combat 

modern business and financial risk than in the past. With proper analysis, today’s uncertainty 

can provide an opportunity for development and advancement. Indeed, the use of tools such as 

@RISK have helped enterprising managers better understand how risk and uncertainty can 

impact a business or project. This paper aims to provide a starting resource for the use of 

@RISK analysis and allow readers the ability to make more productive and insightful business 

decisions. 

 @RISK is an Excel add-in and is one of the most used risk analysis tools today. The 

software uses simulation to combine uncertainties and allow easy graphical analysis. 

Historically, most business decisions were modeled and then individual variables were altered 

to examine their impact on the project. This occurred because analyzing the impact of two or 

more shifting variables on a model at a time was time consuming and labor intensive. In fact, 

this process still occurs in standard excel models that utilize expected values of variables. For 
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example, a certain project’s net present value may be calculated using the assumption that the 

product can be sold at a given price, but what if the price ends up higher or lower than 

expected? The project can be remodeled under the assumption that the product’s price is 

higher or lower, but should the analysis of these alternative situations carry the same weight as 

the expected price? Perhaps price probabilities are not uniformly distributed and this 

characteristic needs consideration. A weighting system could be assigned, but a product’s price 

varies across a wide range of values and without accounting for all possibilities, oversights in 

analysis are inevitable. Even a miniscule difference in price can become substantial if the 

quantity sold is great. Analyzing this multitude of possibilities in a clear and succinct manner is 

exactly the opportunity @RISK provides its users.  

The Steps of Identifying a Stochastic Variable in @RISK 
 As previously stated, @RISK is an excel add-on. The program is very intuitive to those 

already familiar with Excel in a business context. The basic steps to using @RISK to define a 

stochastic variable are as follows: 

1) Access Excel through the start menu or an icon shortcut 

2) Select the @RISK tab in Excel 

3) Select a cell that has been chosen to be stochastic and click the define distribution 

button 

4) Select a type of distribution 

5)  Define the parameters for the distribution 



P a g e  | 5 

 

Figure 1 displays where the @RISK tab can be found in a normal excel document. The tab is 

highlighted in yellow. The next step in using @RISK is to click on the define distributions button 

circled in red on Figure 1. This opens the following window shown in Figure 2. Multiple 

distributions are displayed. As shown in Figure 2, the normal distribution has been selected. 

Clicking on the question mark in the top right corner of the normal distribution icon opens the 

information box shown in Figure 3. The distribution as well as its purposes and the types of 

variables it can model are defined.  

 Double clicking on a distribution allows a user to specify the parameters of the 

distribution. This action opens a pop-up shown in Figure 4 that allows the user to enter 

parameters that characterize the distribution being modeled. 

Figure 1 

Figure 2 Figure 3 
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 Highlighted on 

Figure 4 in yellow are 

the defined parameters 

of a normal distribution. 

Other distributions can 

have more or less 

parameters, but the 

normal distribution 

currently displayed has a 

mean set at zero and a standard deviation of ten. Given these parameters, many commonly 

used statistics and attributes of the distribution are displayed in the red box on the right side of 

the image.  

One of the most powerful and interactive abilities of @RISK can be seen by looking at 

the red circles in Figure 4. By dragging the black arrows, a user can analyze how likely the 

variable is to fall into a certain range. The example in Figure 4 shows that 47.7% of the 

distribution lies between zero and 20. As a closing comment, the green box displays the cell 

formula for an @RISK variable modeled by the normal distribution. With the proper syntax a 

user can enter a variable and its parameters directly into a cell. A syntax list of common 

distributions is included in Table 3 at the end of this paper. 

Figure 4 
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Illustrative Example 

Example Introduction 
The following example shows how powerful @RISK can be in analyzing business 

decisions. In this example, the decision being considered is whether or not to invest in a 

particular venture. The analytical procedure being used is net present value (NPV) or 

discounted cash flow (DCF).The cash flows of the project are outlined in the first attached 

spreadsheet (Attachment A at the end of this paper). The spreadsheet summarizes the 

revenues and costs for a product that is being introduced into a new market. The product is not 

patentable, so the company does not expect to have its market share increase, but it does 

believe that growing demand will increase the overall market size during the next ten years. 

Rapid growth in sales is expected during the first three years and more sustainable growth 

during the following seven years. The product is sold by the case and currently has market 

volume of 300,000 cases, but is expected to increase to 450,000 once it is shelved in additional 

stores. Price is believed to remain at an expected value of $3.50 during phase I and but is 

modeled to start increasing at a 2% inflation rate during phase II. Given the cost, outlay, and 

other assumptions displayed in the colored boxes of Attachment A, the project is expected to 

have a net present value (NPV) of $219,199. However, the analysis shown in Attachment A has 

only utilized standard Excel features and doesn’t provide insights concerning the risks of the 

project. All variables shown utilize only their expected values, without consideration to what 

other values are possible. The next analysis will utilize several @RISK tools to obtain further 

insights. 

 Reviewing the second analysis (Attachment B), it should be apparent that many 

numbers have changed and the project’s NPV is now negative. Several variables have been set 
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to draw from an assigned distribution and the spreadsheet of attachment B shows one possible 

outcome of the project given a different state other than the expected. This demonstrates the 

impact that randomly selected values from the distribution might have on a project. The variables that 

are being selected from a distribution are identified in Table 1 (shown at the end of this paper). 

The results of multiple runs with different values assigned to these variables will be analyzed in 

the following paragraphs.    

Running a Simulation 
Attachment B shows the impact that uncertainty can have on the net present value of 

the project by illustrating one possible outcome using stochastic variables. However, this still 

does not provide a great understanding of the overall risks of the project. To obtain a more 

detailed understanding of the project multiple solutions each with different values for the 

variables can be gathered 

using a procedure called 

simulation. A simulation is 

composed of iterations. An 

iteration is run by clicking 

the dice in the @RISK tab on Excel, as circled in orange in Figure 5. As a general rule of thumb, 

the more iterations the more accurate the inferences derived from the simulation. The 

consequences of using too few of iterations will be covered in depth during the net present 

value analysis later in this paper. For now, it suffices to understand that by adjusting the 

number of iterations in a simulation (shown in the red box of figure 5) and running the 

Figure 5 
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simulation by clicking the icon in the green box, an @RISK user can analyze the impact of 

random variables across many iterations – the risk of the project. 

Analyzing Simulation Results 

Figure 6 shows the characteristics of the first stochastic variable used in the analysis of 

the project, Market Phase 1 Growth Rate (MP1GR). The results shown in Figure 6 can be 

accessed by clicking on the variable’s cell after a simulation has been run. In this example, 

MP1GR is displayed in the cell B3 (teal box in Figure 6). Given the assumption that MP1GR can 

be defined by a triangle distribution with the parameters shown in the orange rectangle, its 

characteristics can be seen by utilizing the drag and click black arrows shown in the red 

rectangle. These results show that only a third of the iterations in the simulation experienced a 

market phase 1 growth rate above the 50% used in the single value expectations model of 

Attachment A. Other statistics like the mean, mode, and variance for this variable are displayed 

Figure 6 
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to the left. The blue line around the triangle shows the shape of the coded distribution, while 

the red represents the variable’s actual values during iterations of the simulation. Because of 

the high number of iterations (5,000), the simulation mirrors closely the distribution. The 

selection of 5,000 iterations will be reviewed again during the section on the analysis of the 

project’s net present value. 

Figure 7 displays the 

characteristics of the variable 

Market Phase 2 Growth Rate 

(MP2GR) and Figure 8 shows the 

distribution for Beginning Market 

Share Growth Rate (BMSGR). These 

distributions show the versatility a 

user can have over how a variable is 

defined. MP2GR is characterized by 

the normal distribution and BMSGR 

is modeled using a uniform 

distribution. Again, the moveable 

black bars have been adjusted to show the percent of iterations where MP2GR is within 1% of 

the expected 10% value and BMSGR is within 5% of its expected value. Annual Market Share 

Loss (AMSL) is modeled by an unskewed triangular distribution but is not graphically shown.  

Figure 7 

Figure 8 
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Defining Correlations in @RISK 

 In many cases, the variables of a project may be related to each other. For example, in 

economics there is often a negative correlation found between price and quantity demanded. 

This is merely to suggest that as the price of a product goes up, the quantity demanded 

decreases. In short, the relationship between price and quantity illustrates one possible 

correlation an @RISK user could define. Correlations can be assigned due to intuition or 

through empirical analysis. For an empirical example, Figure 9 shows how a correlation can be 

calculated empirically using the following steps. 

1. Gather historical data on the variables in which a correlation is believed to exist. Figure 

9 displays product price and quantity demanded data in the large red rectangle. This 

data has been selected as input for the correlation pop-up as shown by the smaller red 

rectangle. 

2. In order to open the correlation pop-up an @RISK user must first select the DATA tab 

circled in yellow and click the Data Analysis icon in the gray rectangle. 

3. As the pop-up shows, a user must first select the input range, clarify how the data is 

organized using the attribute features shown in the blue box, and select an output 

location as identified by the smaller green rectangle. 

4. Once step three is finished and the user clicks the OK button, the correlation matrix 

shown in the larger green rectangle will be inserted into Excel. The correlation between 

the variables in this example is shown circled in orange. This correlation can then be 

used in future modeling. 
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In the model provided for this analysis, a correlation has been created between the 

price per case variable in the first year and the variable cost per case. This could be reflective of 

a company’s decision to price their product with consideration to the costs they are unsure of 

or the assumption that, if the company finds the variable cost to produce the product is higher, 

the market price the product is sold at will typically be higher. In many cases, a negative 

correlation between price and product sales may be a reasonable assumption, but sales in our 

model are considered to be independent of the product’s price. 

 There are three steps to defining a correlation between variables. They are as follows: 

1. Click the Define Correlations button in the @RISK tab 

2. Name the correlation matrix and select a location for it in Excel 

3. Add the variables that are to be correlated 

4. Enter the correlation coefficient 

To begin, Figure 10 shows where the Define Correlations button can be found in the @RISK tab. 

This button has been circled in red and opens the pop-up shown in the figure. The second 

required step is highlighted in the purple box of the pop-up. Although @RISK will auto generate 

Figure 9 
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a generic name for the matrix, the user must select the correlation matrix’s location in Excel. 

For the correlation matrix displayed the cells A27:C29 have been selected. 

 When a user initially 

opens the pop-up in Figure 

10, the table displayed will 

be blank. Variables must be 

selected before the table is 

filled. To do this, a user 

selects the Add Inputs 

button shown in the green 

rectangle. This action opens a 

pop-up prompting a user to enter the cells containing the variables that will be correlated. This 

pop-up is not displayed but is intuitive and follows the format of standard excel data entry 

prompts.  

Once the data for a correlation has 

been entered, the correlation must be 

defined. This can be done several ways, but 

the best method would be to utilize the button 

in the blue rectangle on Figure 10. This opens 

a pop-up that allows a much more interactive 

means of defining a correlation between two 

variables. Figure 11 shows a scatter plot 

Figure 10 

Figure 11 
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analysis of the correlation matrix. By 

using the slider or entering in new 

correlation coefficients, a user can 

help define the relationship between 

two variables. The scatter plots help to illustrate the strength of these correlations graphically. 

After a correlation has been established between two variables, it can be altered using the 

correlation matrix displayed in Figure 12. Again, this matrix appears in the location identified in 

the purple rectangle of Figure 10 after a correlation has been created. Lastly, once a variable 

has been correlated, its formula will display the syntax RiskCorrmat( matrix cell range or matrix 

name, variable position). This is shown below with the formula of Variable Cost per Case 

displayed in Figure 13. A similar adjustment has been made to the cell containing the formula 

for the price per case in year one -- the correlated variable.  

 

Complex Variables, Parent Distributions, and Analysis 

 So far the distribution for specific variables have been specified by the @RISK user. 

Furthermore, once a variable has a value in an iteration, that value is maintained throughout 

the entire ten year model. For example, if the variable Annual Market Share Loss is found to be 

1.8% in an iteration, the model has AMSL of 1.8% for every year of the ten year simulation. 

Wouldn’t it be more realistic to have the value be different each year of the model? And what if 

Figure 13 

Figure 12 
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a connection exists between subsequent year values of a variable? If AMSL was 2.3% this year, 

one might suspect next year’s to be higher than the 2% expected value. Likewise a lower first 

year AMSL may signal a lower AMSL in every subsequent year. @RISK provides the power to 

allow a user to identify a parent distribution of a variable and code time series dependency into 

its models. This has been done with the Price ($/Case) variables and will be discussed shortly. 

First though, we will discuss how this variable distribution was found. 

Identifying a Parent Distribution of a Variable 
 In order to identify the distribution of a variable, a sample of the population is needed. 

In our example, the real prices per case of the product at the first 

of each month since the year 2007 have been recorded. Figure 14 

provides an example of this data. @RISK allows for a user to fit 

distributions to a dataset. This is 

done in three steps: 

1) Select the Distribution Fitting 

icon. Click “Fit…” from the list 

of drop down options.  

2) Name the dataset, select the 

data, and identify the type of 

data. 

3) Fit the data to a distribution. 

The distribution fitting icon is circled 

Figure 14 

Figure 15 
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in red in Figure 15. Completing step 1 opens the window shown to the right in this figure. The 

price per case data has been selected and the data set has been named real price (see the 

green box in Figure 15). The data type is continuous since prices are able to assume any value 

so the “Continuous Sample Data” option has been selected from the available drop down 

menu. Clicking the “Fit” button initiates step 3.  

 Figure 16 shows the next window in the distribution identification process. An @RISK 

user can fit multiple distributions to the data and examine their fit. A triangle and a normal 

distribution have been selected. The input data as well as the characteristics of the best-fit 

triangle and normal distributions are displayed on the right. Other distributions are available to 

be fit on the left where the red and green ovals are shown. Lastly, each distribution can be re-

created by using the data provided in the Statistics section, or by using the Write to Cell button 

circled in yellow. Although this example has estimated a normal distribution with a mean of 

$3.49 and a standard deviation of just over $0.10, unless otherwise stated this paper uses $3.50 

Figure 16 
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and $0.10 to define the price per case variable. 

Time Series Dependency 

Reviewing Attachment B, understand that the price per case variable has actually been 

defined by three separate variables during phase I before the standard inflation of 2% each year 

starts in phase II. Although the phase I prices of each year are their own variables, they are 

dependent on each other in Attachment B. This linkage is to reflect the idea that price will 

fluctuate in the initial years of the product’s release but will stabilize during phase II. Figure 17 

and 18 will display this relationship assumption. Reviewing the Figure 17, the price per case of 

the product in year one (see the red boxes) is defined by a normal distribution with mean price 

of $3.50 and a standard deviation of $.10. The red boxes show both the coding for a normal 

distribution variable and the values referenced by the cell.  The results of the estimation are 

compared to the distribution from which it was taken (observe how the red rectangles mirror 

the blue line). However, it is believed that the price of the product in year one will be the mean 

price and impact the range of prices possible in year two. Figure 18 shows the effect of this 

relationship.  

Looking at the second year price per case values in Figure 18, it is evident that 

uncertainty is increasing under these assumptions. Note that the mean value expected in year 2 

is the value of the price in the first year (chosen from the normal distribution characterized by a 

mean of $3.50 and standard deviation of $.10). The second year has a wider spread of price 

values than the first. This trend of increasing variation occurs in year three as well. The spread is 

evident by comparing the red bars to the blue line that shows the first year’s price distribution 

in Figure 18.  The tails of the second year price distribution are wider and thicker, which suggest 
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that as time increases, price per case will be either substantially higher or lower than its current 

expected value of $3.50. Looking at the values that categorize 90% of the data in the first year 

Figure 17 

Figure 18 
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and second year distributions, the red bar above the distribution has increased its range in year 

two. For instance, 90% of the prices in the simulation fell between the values $3.335 and 

$3.665 in year one, but only 75.5% of iterations had a year two price in this range. Increasing 

price possibilities implies the potential for more volatile profits, and this risk is not captured in 

the deterministic example provided by Attachment A (although this relationship was not 

assumed either).  

Built in Analysis Tools 
Although these graphs allow a user to explore how variables such as prices change over 

time, @RISK allows for much more versatile analysis. By clicking on the icons boxed in yellow in 

Figure 19, a user can graphically display data in many different ways. Scatter plots, graph 

overlays, or distribution modeling are just some of the options available to an @RISK user. In 

Figure 19, a time series graph displaying a simulation’s price per case variable across phase I.  

The standard deviation and range increases of each year’s price per case can be easily viewed. 

Figure 19 
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Analysis of NPV  
 The end result of 

this analysis is to evaluate if this 

project is a profitable endeavor. 

Before we analyze the NPV values 

of the simulation, a specific coding 

necessary for a simulation output 

variable like the net present value NPV calculation should be noted. As Figure 20 shows, the cell 

B22 must include the syntax Riskoutput() in order to properly run.  In an @RISK simulation the 

RiskOutput function identifies a cell in a spreadsheet as a simulation output and records its 

values. 

Regarding the project’s profitability, Figure 21 shows the results of the net present value 

analysis.  Although the output appears similar to graphs previously discussed for variables used 

in this paper’s model, the implications and insights are far more important. It is clear that this 

Figure 21 

Figure 20 
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project has a good probability of being profitable as suggested by a mean NPV of $145,532.58 

and the NPV probability distribution in the NPV space. However, there is some risk involved. To 

measure this risk, the user can review the yellow rectangle in Figure 21. Approximately 60% of 

the iterations in the simulation returned a positive net present value. However, 40% of the 

iterations returned a negative net present value.  

The statistics in the orange rectangle also become far more valuable in the final project 

analysis. For instance, in the most extreme case, this project could lose over one million dollars 

(see minimum value). Is that a risk the investor is willing to take? The maximum (2,039,268.92) 

is shown, but it is more appropriate to consider where the mean and standard deviation lie in 

the NPV distribution. A cursory analysis using the mean and one standard deviation above and 

below suggests the project is most likely to have a net present value somewhere between 

roughly -$300,000 and $600,000. Lastly, some consideration should be given to the skewness of 

the distribution. Although @RISK lists the project’s skewness as 0.3194, this characteristic is 

best understood by looking at the shape of the project’s distribution. This positive skewness is 

apparent from the elongated tail on the right side of the distribution. Given the assumptions 

and simulated results of this project, it appears to be an attractive venture; however, it is not 

without its risks and the sizeable number of iterations with negative net present values may be 

cause for concern to those more risk averse. 
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The Importance of Iterations 

Choosing a sufficient number of iterations can be critical to obtaining accurate results. 

Unless otherwise stated, the graphs in this paper have used 5,000 iterations. This number may 

or may not be sufficient for all models, depending on their intricacy and the assumptions of the 

project. It is always better to err on the side of caution and perform more iterations than less 

when possible. Complicated models may take longer to simulate when more iterations are 

selected; however, the tradeoff is rarely sufficient to merit fewer iterations. To help 

conceptualize the impact fewer iterations can have on the analysis of a project, Figure 22 

displays the project under a fifty iteration simulation. The real risk and NPV distribution is far 

less easy to observe and the minimum and maximum returns from the project are substantially 

different from the 5,000 iteration simulation. Furthermore, 66% of projects now report a 

positive NPV and the overall project’s risk appears to have lessened. Using this analysis, a 

manager might make a poor or improper decision regarding the project.  

Figure 22 
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The Tornado Plot and Variable Influence Analysis  

Although there are many other analytical tools available, one is particularly worth 

mentioning. The tornado plot is shown below in Figure 23. The goal of a tornado plot is to aid in 

deterministic sensitivity analysis. Essentially, it allows for the quick comparison of variables and 

their relative importance to an output like NPV.  The process for calculating a project’s 

sensitivity to a particular variable is performed by @RISK using baseline assumptions of highs, 

lows, and averages of each variable. By varying only one particular variable at a time, its 

potential impact on an outcome is calculated. The value of this analysis is that an @RISK user is 

able to quickly identify the most important drivers of a project. 

  From Figure 23, it is clear that the Beginning Market Share variable is by far the most 

impactful variable to the project’s net present value. Given baseline assumptions for other 

variables, its impact on mean NPV can range from approximately -$408,414.39 to $728,121.63. 

The price per case variables are also listed rather highly up on the tornado plot. One might 

think that the first year price should be higher than later years because its income experiences 

Figure 23 
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less discounting, but it is interestingly fourth in the plot. It is likely that the increasing range of 

price possibilities in later years exacerbates their impact on NPV. This less intuitive conclusion 

demonstrates the power and necessity of tornado plots in analysis. Their insights allow @RISK 

users to prioritize uncertainties in the project. For example, after considering Figure 23 it may 

be beneficial to discuss if there are ways to ensure a larger Beginning Market Share through 

aggressive marketing early in the venture. Likewise, it does not appear that more resources 

should be allocated toward the lower tier variables that capture later phase growth, market 

share loss, and most surprisingly variable cost. 

Conclusion 
 @RISK is an extremely powerful tool to the modern day business analyst. As a 

continuously improving add-on to Excel, it will certainly be part of the future of risk 

management and project analysis. By allowing its users to actively manipulate and analyze 

variables, @RISK allows its users to understand and model real life business environments. 

Furthermore, its ability to analyze multiple possibilities and states through simulations makes it 

an incredibly powerful tool for assessing not only a projects NPV, but also the variables and 

assumptions built into the project. Users of @RISK can better identify whether a project will be 

profitable and understand the driving variables that influence profitability. 
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Variables and Distributions 

Variable Abbreviation Distribution Note 

Market Phase 1 Growth Rate  Triangular Skewed 

Market Phase 2 Growth Rate  Normal 
 Beginning Market Share  Uniform 
 Annual Market Share Loss  Triangular Symmetric 

Price  Normal Unique Each Year 

Variable Cost Per Case Year 1 
 

Normal 
Correlated With 
Price in Year 1 

Variable Cost Per Case Year 2  Normal Linked to Year 1 

Variable Cost Per Case Year 3  Normal Linked to year 2 
Table  1 

Additional Resources 
The following table includes tutorial videos to complete the actions listed. You can access these videos 

by clicking on the title of a specific one on the left hand side of the document or going to the url home 

page on the right. 

Title of Document / Video Location/Web url 

a. Defining Distributions 
b. Defining Outputs 
c. Model Windows 
d. Simulation Settings 
e. Running a Simulation 
f. Histograms and Cumulative 

Curves 
g. Tornado Graphs 
h. Scatter Plots 
i. Overlaying Results Graphs 
j. Customizing Results Graphs 
k. Summary Box Plots and Trend 

Graphs 
l. Results Summary Windows 
m. Data and Statistics Windows 
n. Sensitivity and Scenario 

Analysis 
o. Reports in Excel 
p. Distribution Fitting 
q. The @RISK Library 
r. Correlating Inputs 

http://www.palisade.com/risk/5/tips/en/gs/default.asp 
 

Guide to Using @RISK: Risk Analysis 
and Simulation Add-In for Microsoft® 
Excel by Palisade Corporation 

http://www.palisade.com/downloads/manuals/en/risk5_en.
pdf 

Table  2 

http://www.palisade.com/risk/5/tips/en/gs/1.asp
http://www.palisade.com/risk/5/tips/en/gs/3.asp
http://www.palisade.com/risk/5/tips/en/gs/4.asp
http://www.palisade.com/risk/5/tips/en/gs/5.asp
http://www.palisade.com/risk/5/tips/en/gs/6.asp
http://www.palisade.com/risk/5/tips/en/gs/7.asp
http://www.palisade.com/risk/5/tips/en/gs/7.asp
http://www.palisade.com/risk/5/tips/en/gs/8.asp
http://www.palisade.com/risk/5/tips/en/gs/9.asp
http://www.palisade.com/risk/5/tips/en/gs/11.asp
http://www.palisade.com/risk/5/tips/en/gs/14.asp
http://www.palisade.com/risk/5/tips/en/gs/15.asp
http://www.palisade.com/risk/5/tips/en/gs/15.asp
http://www.palisade.com/risk/5/tips/en/gs/16.asp
http://www.palisade.com/risk/5/tips/en/gs/17.asp
http://www.palisade.com/risk/5/tips/en/gs/18.asp
http://www.palisade.com/risk/5/tips/en/gs/18.asp
http://www.palisade.com/risk/5/tips/en/gs/19.asp
http://www.palisade.com/risk/5/tips/en/gs/20.asp
http://www.palisade.com/risk/5/tips/en/gs/21.asp
http://www.palisade.com/risk/5/tips/en/gs/22.asp
http://www.palisade.com/risk/5/tips/en/gs/default.asp
http://www.palisade.com/downloads/manuals/en/risk5_en.pdf
http://www.palisade.com/downloads/manuals/en/risk5_en.pdf
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Coding Syntaxes 
Distribution Function Notes 

RiskBetaGeneral( alpha1, 

alpha2,minimum, maximum) 

beta distribution with defined minimum, maximum and shape 

parameters alpha1 and alpha2 

RiskBinomial(n,p) 
binomial distribution with n draws and p probability of success 

on each draw 

RiskDiscrete({X1,X2,...,Xn}, 

{p1,p2,...,pn})  

discrete distribution with n possible outcomes with the value X 

and probability weight p for each outcome 

RiskDuniform({X1,X2,...Xn})  
discrete uniform distribution with n outcomes valued at X1 

through Xn 

RiskGamma(alpha,beta) 
gamma distribution with shape parameter alpha and scale 

parameter beta 

RiskGeneral(minimum,maximum, 

{X1,X2,...,Xn}, {p1,p2,...,pn})  

general density function for a probability distribution ranging 

between minimum and maximum with n (x,p) pairs with value 

X and probability weight p for each point 

RiskHistogrm(minimum,maxi-

mum,{p1,p2,...,pn})  

histogram distribution with n classes between minimum and 

maximum with probability weight p for each class 

RiskIntUniform(minimum,maximu

m) 

uniform distribution which returns integer values only 

between minimum and maximum 

RiskNormal(mean,standard 

deviation) 
normal distribution with given mean and standard deviation 

RiskTriang(minimum,most likely, 

maximum) 

triangular distribution with defined minimum, most likely and 

maximum values 

RiskUniform(minimum, maximum) uniform distribution between minimum and maximum 

RiskWeibull(alpha,beta) 
weibull distribution with shape parameter alpha and scale 

parameter beta 

RiskOutput() identifies a cell in a spreadsheet as a simulation output 

Table  3 
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